Publications
2024
Qayyum MZ, Imashimizu M, Leanca M, Vishwakarma RK, Riaz-Bradley A, Yuzenkova Y, Murakami KS. (2024). Structure and function of the Si3 insertion integrated into the trigger loop/helix of cyanobacterial RNA polymerase. Proc Natl Acad Sci U S A. 121(8):e2311480121.
Colman, D.R., Veach, A., Stefansson, A., Wurch, L., Belisle, B.S., Podar, P.T., Yang, Z., Klingeman, D., Senba, K., Murakami, K.S., Kristjansson, J.K., Bjornsdottir, S.H., Boyd, E.S., Podar, M. (2023). Tectonic and geological setting influence hot spring microbiology. Environ Microbiol. 25(11):2481-97.
Narwal, M., Armache, J-P., Edwards, T.J. and Murakami, K.S. (2023). SARS-CoV-2 polyprotein substrate regulates the stepwise Mpro cleavage reaction. J Biol. Chem. 299, 104697. doi:10.1016/j.jbc.2023.104697
Vishwakarma, R.K., Qayyum, M.Z., Babitzke, P*., Murakami, K.S*. (2023). Allosteric mechanism of transcription inhibition by NusG-dependent pausing of RNA polymerase. Proc Natl Acad Sci USA 120(7):e2218516120. (*co-corresponding authors).
Zachary F. Mandell, Rishi K. Vishwakarma, Helen Yakhnin, Katsuhiko S. Murakami, Mikhail Kashlev, Paul Babitzke. (2022). Comprehensive transcription terminator atlas for Bacillus subtilis. Nature Microbiology. 7, 1918-1931. doi: 10.1038/s41564-022-01240-7
James R. Portman, M. Zuhaib Qayyum, Katsuhiko S. Murakami, and Terence R. Strick. (2022). On the stability of stalled RNA polymerase and its removal by RapA. Nucleic Acids Research. 50, 7396-7405. DOI: 10.1093/nar/gkac558
J. Marshall, M. Zuhaib Qayyum, Julie E. Walker, Katsuhiko S. Murakami*, Thomas J. Santangel0*. (2022). The structure and activities of the archaeal transcription termination factor Eta detail vulnerabilities of the transcription elongation complex. Proc Natl Acad Sci U S A. 119, 2207581119. (*co-corresponding authors). https://www.pnas.org/doi/epdf/10.1073/pnas.2207581119.
Lidiya Lisitskaya, Yeonoh Shin, Aleksei Agapov, Anna Olina, Ekaterina Kropocheva, Sergei Ryazansky, Alexei A. Aravin, Daria Esyunina, Katsuhiko S. Murakami*, Andrey Kulbachinskiy*. (2022). Programmable RNA targeting by bacterial Argonaute nucleases with unconventional guide binding and cleavage specificity. Nature Communications. accepted. (*co-corresponding authors)
Shireen R. Ashkar, Walajapet Rajeswaran, Pil H Lee, Claire M. Thrasher, Scott G. Franzblau, Katsuhiko S. Murakami, Hollis D. Showalter, and George A. Garcia. (2022). Optimization of Benzoxazinorifamycins to Minimize hPXR Activation for Treatment of Tuberculosis and HIV Coinfection. ACS Infectious Diseases. 8, 1408-1421.
Rajeswaran, Walajapet; Ashkar, Shireen; Lee, Pil; yeomans, larisa; Shin, Yeonoh; Franzblau, Scott; Murakami, Katsuhiko; Showalter, Hollis; Garcia, George. (2022). Optimization of Benzoxazinorifamycins to Improve Mycobacterium tuberculosis RNA Polymerase Inhibition and Treatment of Tuberculosis. ACS Infectious Diseases. 8, 1422-1438.
Narayanan, A., Narwal, M., Majowicz, S.A., Varricchio, C., Toner, S.A., Ballatore, C., Brancale, A., Murakami, K.S., Jose, J. (2022). Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay. Commun Biol, 5, 169. 10.1038/s42003-022-03090-9
Qayyum, MZ., 10.1016/j.jbc.2021.101404
, V., Renda, A., Murakami, K.S. (2021) Structural basis of RNA polymerase recycling by the Swi2/Snf2 family of ATPase RapA in Escherichia coli, J Biol. Chem. 297, 101404.Janne J. Mäkinen, Yeonoh Shin, Eeva Vieras, Pasi Virta, Mikko Metsä-Ketelä, Katsuhiko S. Murakami*, Georgiy A. Belogurov*. The mechanism of the nucleo-sugar selection by multi-subunit RNA polymerases. Nat Commun 12, 796 (2021). 10.1038/s41467-021-21005-w. (*co-corresponding authors)
Shin, Y., Qayyum, MZ., Pupov, D., Esyunina, D., Kulbachinskiy, A., Murakami, K.S. (2021). Structural basis of ribosomal RNA transcription regulation. Nature Communications. 12, 528. doi.org/10.1038/s41467-020-20776-y
Sung-Hoon Jun , Jaekyung Hyun , Jeong Seok Cha , Hoyoung Kim , Michael S. Bartlett , Hyun-Soo Cho , Katsuhiko S. Murakami. (2020). Direct Binding of TFEalpha Opens DNA Binding Cleft of RNA Polymerase. Nature Communications. 11, 6123. https://doi.org/10.1038/s41467-020-19998-x
Tomáš Kouba, Tomáš Koval’, Petra Sudzinová, Jiří Pospíšil, Barbora Brezovská, Jarmila Hnilicová, Hana Šanderová, Martina Janoušková, Michaela Šiková, Petr Halada, Michal Sýkora, Ivan Barvík, Jiří Nováček, Mária Trundová, Jarmila Dušková, Tereza Skálová, URee Chon, Katsuhiko S. Murakami, Jan Dohnálek, Libor Krásný. (2020). Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nature Communications. 11, 6419. https://doi.org/10.1038/s41467-020-20158-4
Haupenthal J, Kautz Y, Elgaher WAM, Pätzold L, Röhrig T, Laschke MW, Tschernig T, Hirsch AKH, Molodtsov V, Murakami KS, Hartmann RW, Bischoff M. (2020). Evaluation of Bacterial RNA Polymerase Inhibitors in a Staphylococcus aureus-Based Wound Infection Model in SKH1 Mice. ACS Infect Dis. doi: 10.1021/acsinfecdis.0c00034. PMID: 32886885.
Shin, Y., Hedglin, M., Murakami, K. (2020). Structural basis of reiterative transcription from the pyrG and pyrBI promoters by bacterial RNA polymerase. Nucleic Acids Research. 48, 2144. https://dx.doi.org/10.1093/nar/gkz1221
Prakash, D., Iyer, P., Suharti, S., Walters, K., Santiago-Martinez, M., Golbeck, J., Murakami, K*., Ferry, J*. (2019). Structure and function of an unusual flavodoxin from the domain Archaea. Proc Natl Acad Sci U S A. https://dx.doi.org/10.1073/pnas.1908578116(*co-corresponding authors)
Black, S., Ozdemir, A., Kashkina, E., Kent, T., Rusanov, T., Ristic, D., Shin, Y., Suma, A., Hoang, T., Chandramouly, G., Siddique, L., Borisonnik, N., Sullivan-Reed, K., Mallon, J., Skorski, T., Carnevale, V., Murakami, K., Wyman, C., Pomerantz, R. (2019). Molecular basis of microhomology-mediated end-joining by purified full-length Polθ. Nature Communications, 10, 4423. https://dx.doi.org/10.1038/s41467-019-12272-9
Pupov, D., Petushkov, I., Esyunina, D., Murakami, K.M., and Kulbachinskiy, A. (2018). Region 3.2 of the σ factor controls the stability of rRNA promoter complexes and potentiates their repression by DksA. Nucleic Acids Research, 46, 11477-11487. doi: 10.1093/nar/gky919
Mosaei, H., Molodtsov, V., Kepplinger, B., Harbottle, J., Moon, C.W., Jeeves, R.E., Ceccaroni, L., Shin, Y., Morton-Laing, S., Marrs, E.C.L., Wills, C., Clegg, W., Yuzenkova, Y., Perry, J.D., Bacon, J., Errington, J., Allenby, N.E.E., Hall, M.J., Murakami, K.S*., Zenkin, N*. (2018). Mode of action of kanglemycin A, an ansamycin natural product that is active against rifampicin-resistant Mycobacterium tuberculosis. Molecular Cell, 72, 263-274. DOI:https://doi.org/10.1016/j.molcel.2018.08.028
(*co-corresponding authors)
Narayanan, A., Vago, F.S., Li, K., Qayyum, M.Z., Yernool, D., Jiang, W., and Murakami, K.S. (2018). Cryo-EM structure of Escherichia coli sigma70 RNA polymerase and promoter DNA complex revealed a role of sigma non-conserved region during the open complex formation. J. Biol. Chem. 293, 7367-7375. DOI: 10.1074/jbc.RA118.002161
, V., , E., , L., , X., , M., , S.E., and Allosteric effector ppGpp potentiates the inhibition of transcript initiation by DksA. Molecular Cell 69, 828–839.e5 (2018). DOI:10.1073/pnas.1702741114(*co-corresponding authors)
Murakami, K.S*., Shin, Y., Turnbough, C.L., Jr., and Molodtsov, V*. (2017). X-ray crystal structure of a reiterative transcription complex reveals an atypical RNA extension pathway. Proc Natl Acad Sci U S A 114, 8211-8216. DOI:Molodtsov, V., Scharf, N.T., Stefan, M.A., Garcia, G.A., and Murakami, K.S. (2017). Structural basis for rifamycin resistance of bacterial RNA polymerase by the three most clinically important RpoB mutations found in Mycobacterium tuberculosis. Mol Microbiol 103, 1034-1045. DOI: 10.1111/mmi.13606
Scharf, N.T., Molodtsov, V., Kontos, A., Murakami, K.S., and Garcia, G.A. (2017). Novel chemical scaffolds for inhibition of Rifamycin-resistant RNA polymerase discovered from high-throughput screening. SLAS Discov 22, 287-297. DOI: 10.1177/2472555216679994
Yakhnin, A.V., Murakami, K.S., and Babitzke, P. (2016). NusG Is a sequence-specific RNA polymerase pause factor that binds to the non-template DNA within the paused transcription bubble. J Biol Chem 291, 5299-5308. DOI:Gu, H., Yoshinari, S., Ghosh, R., Ignatochkina, A.V., Gollnick, P.D., Murakami, K.S., and Ho, C.K. (2016). Structural and mutational analysis of archaeal ATP-dependent RNA ligase identifies amino acids required for RNA binding and catalysis. Nucleic Acids Res 44, 2337-2347. DOI: 10.1093/nar/gkw094
Molodtsov, V., Fleming, P.R., Eyermann, C.J., Ferguson, A.D., Foulk, M.A., McKinney, D.C., Masse, C.E., Buurman, E.T., and Murakami, K.S. (2015). X-ray crystal structures of Escherichia coli RNA polymerase with switch region binding inhibitors enable rational design of squaramides with an improved fraction unbound to human plasma protein. J Med Chem 58, 3156-3171. DOI:Yang, Y., Darbari, V.C., Zhang, N., Lu, D., Glyde, R., Wang, Y.P., Winkelman, J.T., Gourse, R.L., Murakami, K.S., Buck, M., and Zhang, X. (2015). TRANSCRIPTION. Structures of the RNA polymerase-sigma54 reveal new and conserved regulatory strategies. Science 349, 882-885. DOI: 10.1126/science.aab1478
Basu, R.S., Warner, B.A., Molodtsov, V., Pupov, D., Esyunina, D., Fernandez-Tornero, C., Kulbachinskiy, A., and Murakami, K.S. (2014). Structural basis of transcription initiation by bacterial RNA polymerase holoenzyme. J Biol Chem 289, 24549-24559. DOI: 10.1074/jbc.M114.584037
Jun, S.H., Hirata, A., Kanai, T., Santangelo, T.J., Imanaka, T., and Murakami, K.S. (2014). The X-ray crystal structure of the euryarchaeal RNA polymerase in an open-clamp configuration. Nat Commun 5, 5132. DOI: 10.1038/ncomms6132
Song, T., Park, Y., Shamputa, I.C., Seo, S., Lee, S.Y., Jeon, H.S., Choi, H., Lee, M., Glynne, R.J., Barnes, S.W., et al. (2014). Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the beta’ subunit of RNA polymerase. Mol Microbiol 91, 1106-1119. DOI: 10.1111/mmi.12520
Mechold, U., Potrykus, K., Murphy, H., Murakami, K.S*., and Cashel, M*. (2013). Differential regulation by ppGpp versus pppGpp in Escherichia coli. Nucleic Acids Res 41, 6175-6189. DOI: 10.1093/nar/gkt302(*co-corresponding authors)
Molodtsov, V., Nawarathne, I.N., Scharf, N.T., Kirchhoff, P.D., Showalter, H.D., Garcia, G.A., and Murakami, K.S. (2013). X-ray crystal structures of the Escherichia coli RNA polymerase in complex with benzoxazinorifamycins. J Med Chem 56, 4758-4763. DOI: 10.1021/jm4004889
Murakami, K.S. (2013). X-ray crystal structure of Escherichia coli RNA polymerase s70 holoenzyme. J Biol Chem 288, 9126-9134. DOI: 10.1074/jbc.M112.430900
Basu, R.S., and Murakami, K.S. (2013). Watching the bacteriophage N4 RNA polymerase transcription by time-dependent soak-trigger-freeze X-ray crystallography. J Biol Chem 288, 3305-3311. DOI: 10.1074/jbc.M112.387712
Sarkar, P., Sardesai, A.A., Murakami, K.S., and Chatterji, D. (2013). Inactivation of the bacterial RNA polymerase due to acquisition of secondary structure by the omega subunit. J Biol Chem 288, 25076-25087. DOI: 10.1074/jbc.M113.468520
Reichlen, M.J., Vepachedu, V.R., Murakami, K.S., and Ferry, J.G. (2012). MreA functions in the global regulation of methanogenic pathways in Methanosarcina acetivorans. MBio 3, e00189-00112. DOI: 10.1128/mBio.00189-12
Gleghorn, M.L., Davydova, E.K., Basu, R., Rothman-Denes, L.B., and Murakami, K.S. (2011). X-ray crystal structures elucidate the nucleotidyl transfer reaction of transcript initiation using two nucleotides. Proc Natl Acad Sci U S A 108, 3566-3571. DOI: 10.1073/pnas.1016691108
Klein, B.J., Bose, D., Baker, K.J., Yusoff, Z.M., Zhang, X., and Murakami, K.S. (2011). RNA polymerase and transcription elongation factor Spt4/5 complex structure. Proc Natl Acad Sci U S A 108, 546-550. DOI: 10.1073/pnas.1013828108
Reichlen, M.J., Murakami, K.S., and Ferry, J.G. (2010). Functional analysis of the three TATA binding protein homologs in Methanosarcina acetivorans. J Bacteriol 192, 1511-1517. DOI:
Gleghorn, M.L., Davydova, E.K., Rothman-Denes, L.B., and Murakami, K.S. (2008). Structural basis for DNA-hairpin promoter recognition by the bacteriophage N4 virion RNA polymerase. Mol Cell 32, 707-717. DOI: 10.1016/j.molcel.2008.11.010
Hirata, A., Kanai, T., Santangelo, T.J., Tajiri, M., Manabe, K., Reeve, J.N., Imanaka, T., and Murakami, K.S. (2008). Archaeal RNA polymerase subunits E and F are not required for transcription in vitro, but a Thermococcus kodakarensis mutant lacking subunit F is temperature-sensitive. Mol Microbiol 70, 623-633. DOI: 10.1111/j.1365-2958.2008.06430.x
Hirata, A., Klein, B.J., and Murakami, K.S. (2008). The X-ray crystal structure of RNA polymerase from Archaea. Nature 451, 851-854. DOI: 10.1038/nature06530
Murakami, K.S., Davydova, E.K., and Rothman-Denes, L.B. (2008). X-ray crystal structure of the polymerase domain of the bacteriophage N4 virion RNA polymerase. Proc Natl Acad Sci U S A 105, 5046-5051. DOI: 10.1073/pnas.0712325105
Suharti, S., Murakami, K.S., de Vries, S., and Ferry, J.G. (2008). Structural and biochemical characterization of flavoredoxin from the archaeon Methanosarcina acetivorans. Biochemistry 47, 11528-11535. DOI: 10.1021/bi801012p
Imashimizu, M., Hanaoka, M., Seki, A., Murakami, K.S., and Tanaka, K. (2006). The cyanobacterial principal sigma factor region 1.1 is involved in DNA-binding in the free form and in transcription activity as holoenzyme. FEBS Lett 580, 3439-3444. DOI: 10.1016/j.febslet.2006.05.017
Publications before joining Penn State University (Postdoc and Ph. D. training)
Chlenova, M., S. Masuda, K.S. Murakami, V. Nikiforov, S.A. Darst, and A. Mustaev (2005). Structure and function of lineage-specific sequence insertions in the bacterial RNA polymerase beta’ subunit. J Mol Biol 353, 138-154.
Masuda, S., K.S. Murakami, S. Wang, C. Anders Olson, J. Donigian, F. Leon, S.A. Darst, and E.A. Campbell (2004). Crystal structures of the ADP and ATP bound forms of the Bacillus anti-sigma factor SpoIIAB in complex with the anti-anti-sigma SpoIIAA. J Mol Biol 340, 941-956.
Artsimovitch, I., V. Svetlov, K.S. Murakami, and R. Landick (2003). Co-overexpression of E. coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions. J Biol Chem 278, 12344-12355.
Nickels, B.E., S.L. Dove, K.S. Murakami, S.A. Darst, and A. Hochschild (2002). Protein-protein and protein-DNA interactions of sigma70 region 4 involved in transcription activation by lambdacI. J Mol Biol 324, 17-34.
Murakami, K.S., S. Masuda, and S.A. Darst (2002). Structural basis of transcription initiation: T. aquaticus RNA polymerase holoenzyme at 4 Å resolution. Science 296, 1280–1284.
Murakami, K.S., S. Masuda, E.A. Campbell, O. Muzzin, and S.A. Darst (2002). Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296, 1285-1290.
Finney, A.H., R.J. Blick, K. Murakami, A. Ishihama, and A.M. Stevens (2002). Role of the C-terminal domain of the alpha subunit of RNA polymerase in LuxR-dependent transcriptional activation of the lux operon during quorum sensing. J Bacteriol 184, 4520-4528.
Campbell, E.A., N. Korzheva, A. Mustaev, K. Murakami, S. Nair, A. Goldfarb, and S.A. Darst (2000). Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104, 901–912.
Otomo, T., T. Yamazaki, K. Murakami, A. Ishihama, and Y. Kyogoku (2000). Structural study of the N-terminal domain of the alpha subunit of Escherichia coli RNA polymerase solubilized with non-denaturing detergents. J Biochem (Tokyo) 128, 337-344.
Harada, Y., T. Funatsu, K. Murakami, Y. Nonoyama, A. Ishihama, and T. Yanagida (1999). Single-molecule imaging of RNA polymerase-DNA interactions in real time. Biophys J 76, 709-15.
Prost, J.F., D. Negre, C. Oudot, K. Murakami, A. Ishihama, A.J. Cozzone, and J.C. Cortay (1999). Cra-dependent transcriptional activation of the icd gene of Escherichia coli. J Bacteriol 181, 893-898.
Miyake, R., K. Murakami, J.T. Owens, D.P. Greiner, O.N. Ozoline, A. Ishihama, and C.F. Meares (1998). Dimeric association of Escherichia coli RNA polymerase alpha subunits, studied by cleavage of single-cysteine alpha subunits conjugated to iron-(S)-1-[p-(bromoacetamido)benzyl]ethylenediaminetetraacetate. Biochemistry 37, 1344-1349.
Negre, D., C. Oudot, J.F. Prost, K. Murakami, A. Ishihama, A.J. Cozzone, and J.C. Cortay (1998). FruR-mediated transcriptional activation at the ppsA promoter of Escherichia coli. J Mol Biol 276, 355-365.
Owens, J.T., A.J. Chmura, K. Murakami, N. Fujita, A. Ishihama, and C.F. Meares (1998). Mapping the promoter DNA sites proximal to conserved regions of sigma70 in an Escherichia coli RNA polymerase-lacUV5 open promoter complex. Biochemistry 37, 7670-7675.
Owens, J.T., R. Miyake, K. Murakami, A.J. Chmura, N. Fujita, A. Ishihama, and C.F. Meares (1998). Mapping the sigma70 subunit contact sites on Escherichia coli RNA polymerase with a sigma70-conjugated chemical protease. Proc Natl Acad Sci U S A 95, 6021-6026.
Ozoline, O.N., N. Fujita, K. Murakami, and A. Ishihama (1998). Monitoring of RNA polymerase-DNA UP element interaction by a fluorescent probe conjugated to alpha subunit. Eur J Biochem 253, 371-381.
Ozoline, O.N., K. Murakami, T. Negishi, N. Fujita, and A. Ishihama (1998). Specific fluorescent labeling of two functional domains in RNA polymerase alpha subunit. Proteins 30, 183-192.
Boucher, P.E., K. Murakami, A. Ishihama, and S. Stibitz (1997). Nature of DNA binding and RNA polymerase interaction of the Bordetella pertussis BvgA transcriptional activator at the fha promoter. J Bacteriol 179, 1755-1763.
Choy, H.E., R.R. Hanger, T. Aki, M. Mahoney, K. Murakami, A. Ishihama, and S. Adhya (1997). Repression and activation of promoter-bound RNA polymerase activity by Gal repressor. J Mol Biol 272, 293-300.
Chugani, S.A., M.R. Parsek, C.D. Hershberger, K. Murakami, A. Ishihama, and A.M. Chakrabarty (1997). Activation of the catBCA promoter: probing the interaction of CatR and RNA polymerase through in vitro transcription. J Bacteriol 179, 2221-2227.
Murakami, K., M. Kimura, J.T. Owens, C.F. Meares, and A. Ishihama (1997). The two alpha subunits of Escherichia coli RNA polymerase are asymmetrically arranged and contact different halves of the DNA upstream element. Proc Natl Acad Sci U S A 94, 1709-1714.
Murakami, K., J.T. Owens, T.A. Belyaeva, C.F. Meares, S.J. Busby, and A. Ishihama (1997). Positioning of two alpha subunit carboxy-terminal domains of RNA polymerase at promoters by two transcription factors. Proc Natl Acad Sci U S A 94, 11274-11278.
Yang, J., K. Murakami, H. Camakaris, N. Fujita, A. Ishihama, and A.J. Pittard (1997). Amino acid residues in the alpha-subunit C-terminal domain of Escherichia coli RNA polymerase involved in activation of transcription from the mtr promoter. J Bacteriol 179, 6187-6191.
Artsimovitch, I., K. Murakami, A. Ishihama, and M.M. Howe (1996). Transcription activation by the bacteriophage Mu Mor protein requires the C-terminal regions of both alpha and sigma70 subunits of Escherichia coli RNA polymerase. J Biol Chem 271, 32343-32348.
Giladi, H., K. Murakami, A. Ishihama, and A.B. Oppenheim (1996). Identification of an UP element within the IHF binding site at the PL1- PL2 tandem promoter of bacteriophage lambda. J Mol Biol 260, 484-491.
Murakami, K., N. Fujita, and A. Ishihama (1996). Transcription factor recognition surface on the RNA polymerase alpha subunit is involved in contact with the DNA enhancer element. EMBO J 15, 4358-4367.
Tang, Y., K. Murakami, A. Ishihama, and P.L. deHaseth (1996). Upstream interactions at the lambda pRM promoter are sequence nonspecific and activate the promoter to a lesser extent than an introduced UP element of an rRNA promoter. J Bacteriol 178, 6945-6951.
Shin, Y., and Murakami K.S. (2021) Watching the bacterial RNA polymerase transcription reaction by time-dependent soak-trigger-freeze X-ray crystallography. Enzymes. 49, 305-314. DOI: 10.1016/bs.enz.2021.06.009
Qayyum, MZ, Shin, Y and Murakami, KS (2021) RNA Polymerase Reaction in Bacteria. In: Jez Joseph (eds.) Encyclopedia of Biological Chemistry, 3rd Edition. 4, 358–364. Oxford: Elsevier. DOI: 10.1016/B978-0-12-819460-7.00252-8
Sutherland, C., and Murakami, K.S. (2018). An introduction to the structure and function of the catalytic core enzyme of Escherichia coli RNA polymerase. EcoSal Plus. DOI: 10.1128/ecosalplus.ESP-0004-2018
Hauryliuk, V., Atkinson, G.C., Murakami, K.S., Tenson, T., and Gerdes, K. (2015). Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol 13, 298-309. DOI: 10.1038/nrmicro3448
Murakami, K.S. (2015). Structural biology of bacterial RNA polymerase. Biomolecules 5, 848-864. DOI: 10.3390/biom5020848
Jun, S.H., Reichlen, M.J., Tajiri, M., and Murakami, K.S. (2011). Archaeal RNA polymerase and transcription regulation. Crit Rev Biochem Mol Biol 46, 27-40. DOI: 10.3109/10409238.2010.538662
Hirata, A., and Murakami, K.S. (2009). Archaeal RNA polymerase. Curr Opin Struct Biol 19, 724-731. DOI: 10.1016/j.sbi.2009.10.006 DOI: 10.1016/j.sbi.2009.10.006
Murakami, K.S., and Trakselis, M.A. (eds.) Nucleic Acid Polymerases in Nucleic Acids and Molecular Biology series. vol 30, Springer. 2013. ISBN 978-3-642-39796-7. Link
Oct 24, 2023. “Murakami selected as Innovation Fund investigator by Pew Charitable Trusts”. Penn State News
Oct 24, 2023. “Pew Funds 6 Teams to Advance Cutting-Edge Biomedical Research“.
May 30, 2023. “Essential process for SARS-CoV-2 viral replication visualized”. Penn State News
Feb 9, 2023. “DNA stuck in the gears of the RNA production machine”. Penn State News
Feb 25, 2022. “Repurposing FDA-approved drugs may help combat COVID-19”. Penn State News
Jan 22, 2021. “Regulating the ribosomal RNA production line”. Penn State Science
Sept 20, 2018, “A naturally occurring antibiotic active against drug-resistant tuberculosis“. Penn State Science
Sept 20, 2018, “Discovery helps fight against drug-resistant Tuberculosis“. Newcastle University Press Office
Feb 22, 2018, New crystal structures reveal a mysterious mechanism of gene regulation by the “magic spot”. Penn State News | Penn State Science
Jan 3, 2018, Out through the window: Crystal structure reveals details of nonstandard RNA transcription. Link 1 | Link 2
Murakami, K.S. (2013). Targeting multidrug resistance in tuberculosis treatment. International Innovation, November, 88-90. Research Media, United Kingdom. View PDF
Yeonoh Shin (2020). Structural Basis of Bacterial Transcription: Investigation of Mechanisms of Reiterative Transcription and Ribosomal RNA Transcription by X-ray Crystallography and Cryo-Electron Microscopy. LINK
Catherine Sutherland (2019). Developments in Structure Based Drug Design: A Promising Method for Targeting Rifampicin Resistant Mycobacterium tuberculosis RNA Polymerase. LINK
Uyen Nguyen (2018). Characterization of HelD, a Novel RNA polymerase Binding Protein in Bacillus subtilis. LINK
Ritwika Basu (2014). MECHANISTIC INVESTIGATIONS OF NUCLEOTIDYL-TRANSFER REACTION AND DE NOVO INITIATION IN RNA POLYMERASES BY X-RAY CRYSTALLOGRAPHY. LINK
Brittany Warner (2012). A STRUCTURAL STUDY OF BACTERIAL RNA POLYMERASE CONFORMATIONAL CHANGES DURING TRANSCRIPTION ELONGATION. LINK
Brianna J. Klein (2010). CRYSTAL STRUCTURE AND BIOCHEMICAL ANALYSIS OF ARCHAEAL RNA POLYMERASE TRANSCRIPTION ELONGATION FACTORS. LINK
Matthew J. Reichlen (2010). FUNCTIONAL ASSESSMENT OF TRANSCRIPTIONAL REGULATION IN THE METHANOGEN, METHANOSARCINA ACETIVORANS. LINK
Momoko Tajiri (2008). ROLES OF ARCHAEAL GENERAL TRANSCRIPTION FACTORS TFB1 AND TFB2 IN THERMOCOCCUS KODAKARENSIS DURING HEAT STRESS RESPONSE. LINK
Michael L. Gleghorn (2008). X-RAY CRYSTAL STRUCTURES EXPLAIN DNA-HAIRPIN PROMOTER BINDING AND DE NOVO TRANSCRIPTION INITIATION FOR THE N4 VIRION RNA POLYMERASE. LINK